Searching for new physics from a dark sector using levitated microspheres

David Moore, Yale University

Alexander Rider, Charles Blakemore, Maxime Louis, Marie Lu, Giorgio Gratta, *Stanford University*

Sub-eV 2016, LBNL, December 9, 2016

Optical levitation

- New forces at << mm distances appear in a variety of models of new physics
 - Non-Newtonian forces at µm distances (hierarchy problem, dark energy)
 - Hidden sector dark matter models (millicharged particles, dark photons)
- Levitate ~µm spheres in high vacuum and look for new forces at << 100 µm
- At high vacuum, extremely low dissipation is possible:

 $\sigma_{\rm F} \sim 10^{-21} \, \rm N \, Hz^{-1/2}$ at $10^{-10} \, \rm mbar$

Near "standard quantum limit" for ~µm size masses

Photograph of trapped microsphere:

Schematic of optical levitation technique:

Experimental setup

- Developed setup capable of levitating SiO_2 microspheres with $r = 0.5-5 \mu m$
- Microspheres are levitated in vacuum chamber with λ = 1064 nm, ~few mW trapping laser
- Have demonstrated trapping times of >2 weeks at ~10⁻⁷ mbar

Simplified optical schematic: **PSPD** chamber Axial Bandpass imaging filters laser **PSPD Radial FPGA** imaging laser **Trapping** laser **AOD**

Photograph of experimental setup:

Microsphere neutralization

- Have demonstrated controlled discharging with single e precision
- Measure microsphere response to oscillating electric field while flashing with UV light
- Allows absolute calibration of force sensitivity, $\sigma_F \sim 10^{-17} \text{ N Hz}^{-1/2} \ (\sigma_a \sim 100 \ \mu\text{m/s}^2 \ \text{Hz}^{-1/2})$

Example of discharging process:

Electrode cross-section:

Photo of electrodes:

Number of charges [e

Microsphere neutrality

- Have performed a search for millicharged particles (IqI << 1e) bound in the microspheres
- Stable, millicharged particles could be produced in the early universe and form bound states that can be searched for in terrestrial matter
- Neutralize microspheres (so that $n_e = n_p$) and search for residual fractional charge

Residual charge measurement for an example microsphere:

Millicharged particles

- Repeated search with 10 microspheres ($m \approx 0.1$ ng each)
- Statistically significant residual response consistent with permanent dipole coupling to small E-field gradients
- Sensitivity to single fractionally charged particles with charge as small as 5 x 10⁻⁵ e

Measured residual response:

Limits on abundance of millicharged particles:

Moore et al., Phys. Rev. Lett. 113 251801 (2014), arXiv:1408:4396

Optimized apparatus

- Primary limitation was backgrounds due to microsphere dipole moment
- Optimized setup can substantially improve field uniformity
- Vacuum tip/tilt stage allows in situ alignment to ~100 μrad

Schematic of improved setup:

Future sensitivity

- Next-generation experiment aimed at backgrounds below 10^{-19} N for r = 20 µm spheres
- Will allow improved searches for millicharged particles as well as tests of the neutrality of matter $(|q_p + q_e + q_n|)$

Projected sensitivity, millicharged particles:

The purpose of the second property of the pro

Projected sensitivity, neutrality of matter:

Screened scalar dark energy

• In certain screened scalar dark energy models new forces appear below:

$$\Lambda = 2.4 \text{ meV} \Rightarrow \hbar c / \Lambda \sim 80 \mu\text{m}$$

 To search for forces from screened scalars, oscillate mass density near the trap using a Au-plated Si cantilever

Electrostatic calibration

Neutral microspheres contain ~10¹⁴ electric charges and interact primarily as dipoles:

 $\vec{F} = (\vec{p} \cdot \vec{\nabla}) \vec{E} \quad \Rightarrow \quad F_z \approx (p_{0z} + \alpha E_z) \frac{\partial E_z}{\partial z}$

Permanent dipole

Induced dipole

FEM calculation of electric potential:

Force for permanent and induced dipole:

Electrostatic calibration

- Bias cantilever to from 1 to 5 V and sweep its position
- Fits to distance dependence allow determination of permanent and induced dipole moments

Microsphere response vs. distance:

Fits to dipole response:

Microsphere	$p_{\theta z}$ [e μ m]	α/α_{θ}
#1	151 ± 6	0.21 ± 0.13
#2	89 ± 10	0.00 ± 0.33
#3	192 ± 30	0.25 ± 0.14

Polarizability, α , measured relative to:

$$\alpha_0 = 3\epsilon_0 \left(\frac{\epsilon_r - 1}{\epsilon_r + 2}\right) \left(\frac{4}{3}\pi r^3\right)$$

for $\varepsilon_r \approx 3$, $r = 2.5 \mu m$

Chameleon force

- As an example, calculated sensitivity to forces mediated by chameleons
- Assume inverse power law potential (n = 1):

$$V_{\text{eff}} = \Lambda^4 \left(1 + \frac{\Lambda}{\phi} \right) + \left(\frac{\beta \rho}{M_{Pl}} \right) \phi$$

 Solve equation of motion in full 3D geometry with FEM

$$\nabla^2 \phi = \partial_{\phi} V_{\text{eff}}$$

Screening negligible when:

$$\rho r^2 \ll \frac{3M_{Pl}}{\beta}\phi$$

 Fit data to sum of force from chameleon and free electrostatic background

Residual response

- After measuring response to non-zero bias, set to nominal potential of 0 V
- Residual response consistent with <30 mV contact potentials

Constraints

- Consistent with background-only model at 90% CL
- Sensitivity limited by electrostatic backgrounds, and unable to constrain models with $\Lambda = 2.4$ meV due to self-screening
- Constraints can be set at $\Lambda > 4.6$ meV where self-screening is reduced

Background free sensitivity

 If backgrounds could be eliminated, substantial improvement in sensitivity might be possible

Updated constraints on chameleon interactions:

Possible improvements:

Spin µspheres

Measure and cancel contact potentials

Improve probe mass design

Plot from talk this morning from H. Müller

Dark photons

Tests of Coulomb's law can search for new forces from a dark sector (e.g. dark photons)

$$\begin{array}{ll} \text{Dark} & V(r) = \frac{e^2}{r} \left(1 + \chi^2 e^{-m_\Gamma r}\right) \\ \text{Light} & \text{millicharged} & V(r) \approx \frac{\alpha}{r} \left[1 + \frac{\alpha \epsilon^2}{4\sqrt{\pi}} \frac{\exp(-2mr)}{(mr)^{\frac{3}{2}}}\right] \\ & \text{particles:} & \end{array}$$

e.g. Jaeckel and Ringwald, Ann. Rev. Nucl. Part. Sci., 60, 405 (2010)

- Most sensitive to meV-eV mass range
- Ultimate sensitivity could reach DM models below solar limits
- Complementary to "light shining through wall" experiments and DM-Radio

Schematic of electrodes:

Projected sensitivity, dark photons:

Summary

- Levitated microspheres in high vacuum provide a sensitive probe for new forces at distances << 100 μm
- Have performed sensitive searches for millicharged particles and screened scalar dark energy models
- Next-generation searches will further improve sensitivity to tiny fractional charges and forces mediated by dark photons
- In parallel, these techniques will test the ISL for gravity at micron distances
- Other applications to search for dark sector physics may be possible as these techniques are further developed!

Trap loading

- Microspheres are launched from bottom surface of quartz cantilever
- Pull-off forces of ~100 nN require accelerations ~106 m/s²
- Bottom coverslip protects lens and is retracted after trapping

Schematic of microsphere dropper:

Pull-off force vs. microsphere radius:

Microspheres on quartz surface:

Pull-off force (nN)

Microsphere cooling

- Below ~1 mbar, active feedback cooling is needed for stable trapping
- Monitor position of microsphere and modulate amplitude and pointing of the trapping beam
- Can cool center of mass motion to < 50 mK in all 3 DOF

Mechanism for laser heating:

Microsphere position spectrum with cooling:

Attractor

- Need attractor that can be placed at ~µm separations from microsphere
- Spatially varying density allows reduction of backgrounds
- Stage allows cantilever to be swept ~100 μm in all 3 DOF at >10 Hz

Side view of microsphere near attractor:

D. Moore, Yale

Sub-eV, LBNL, Dec. 9, 2016

Expected backgrounds

- If unscreened, differential Casimir force between Au and Si can present dominant background
- Coating attractor with Au shield layer (0.5 to 3 µm thick) can sufficiently suppress this background
- Background due to surface "patch potentials" should be subdominant for expected face-to-face separations

Laser noise

• For $r > 1 \mu m$ spheres, thermal noise can be made negligible at low pressure

(below SQL at $p \sim 10^{-10}$ mbar)

 Technical sources of noise dominate in existing experiments

 Even NPRO Nd:YAG lasers developed for LIGO 1st stage require additional stabilization

Pointing noise limit (Mephisto):

$$\frac{\delta x}{\omega_0} \sim 10^{-6} \text{ Hz}^{-1/2}$$

$$\Rightarrow \delta F \sim 10^{-19} \text{ N Hz}^{-1/2}$$

~100x improvement over current sensitivity

~50x worse than SQL

Mode cleaning

- Output of laser can be stabilized by active feedback and passive mode cleaning cavity
- Stabilization to requirement at SQL for $F \sim 50$ external mode cleaning cavity
- Will also test coiled single mode fiber as mode cleaner

Schematic of ring resonator mode cleaner:

Vibration stabilized ring-resonator similar to LIGO output mode cleaner

Transmission of higher order modes, F = 50:

Sensitivity at SQL

 Reaching SQL would allow substantial amount of explored parameter space to be searched for new gravity-like interactions!

Assumptions:

 $r_b = 10 \mu m$, optimized for $\lambda \sim 2-100 \mu m$

Face-to-face separation, $s = 5 \mu m$ Au shield thickness, $t = 3\mu m$ $\tau = 10^5 s$ integration

5 yr goal: $\sigma_F = 5 \times 10^{-19} \text{ N Hz}^{-1/2}$ Future (at SQL):

 $\sigma_F = 2 \times 10^{-20} \,\text{N Hz}^{-1/2}$

Assumes shielded attractors suppress backgrounds below projected noise level